Publications

Newcastle University

7. Hibernating ribosomes as drug targets?

Ekemezie CL, Melnikov SV (2024)
Frontiers in Microbiology, in press (Review) PDF

6. Rippling life on a dormant planet: hibernation of ribosomes, RNA polymerases and other essential enzymes

Helena-Bueno K, Chan LI, Melnikov SV (2024)
Frontiers in Microbiology, 15:1386179 (Review) PDF

5. Gosha: a database of organisms with defined optimal growth temperatures

Helena-Bueno K, Brown CR, Konyk E, Melnikov SV (2024)
bioRxiv (Public Resource) PDF

4. The structure of dormant bacterial ribosomes reveals an elusive hibernation factor of protein synthesis

Helena-Bueno K, Rybak MYu, Ekemezie CL, Sullivan R, Brown CR, Dingwall C, Basle A, Schneider C, Connolly JPR, Blaza JN, Csörgő B, Moynihan PJ, Gagnon MG, Hill CH, Melnikov SV (2024)
Nature, 626:1125–1132 PDF

3. A conserved ribosomal protein has entirely different structures in different organisms

Schierholz L, Brown CR, Helena-Bueno K, Uversky VN, Barandun J, Melnikov SV (2023)
Molecular Biology and Evolution,41:msad254 PDF

2. Ribosomal proteins hold a more accurate record of thermal adaptation compared to rRNA

van den Elzen A, Helena-Bueno KBrown CR, Chan LIMelnikov SV (2023)
Nucleic Acids Research, 51:8048–8059, PDF

1. “Lose-to-gain” adaptation to genome decay in the structure of the smallest eukaryotic ribosomes

Nicholson D, Salamina M, Panek J, Helena-Bueno K, Brown CR, Hirt RP, Ranson NA, Melnikov SV (2022)
Nature Communications,13:591  PDF | SI

 

 
Yale University

 

14. Engineered mRNA–ribosome fusions for facile biosynthesis of selenoproteins

Thaenert A, Sevostyanova A, Chung CZ, Vargas-Rodriguez O, Melnikov SV, Söll D (2024)
Proceedings of the National Academy of Sciences, 121:e2321700121,

13. tRNA shape as an identity element for an archaeal pyrrolysyl-tRNA synthetases from the human gut

Krahn N, Zhang J,  Melnikov SV, Tharp JM, Villa A, Patel A, Howard RJ, Gabir H, Patel TR, Stetefeld J, Puglisi J, Söll D (2023)
Nucleic Acids Research, accepted

12. Translation machinery for deliberate genetic code mistranslation

Vargas-Rodriguez O, Badranb AH, Hoffmanc KS, Chend M, Crnkovica A, Dingd Y, Kriegerc JR, Söll D, Melnikov SV (2021)
Proceedings of the National Academy of Sciences,

11. Exploiting evolutionary trade-offs for post-treatment management of drug-resistant populations

Melnikov SV, Stevens DL, Fu X, Kwok HS, Zhang J-T, Shen Y, Sabina J, Lee K, Lee H, Söll D (2020)
Proceedings of the National Academy of Sciences,  PDF | SI

10. Archaeal ribosomal proteins possess NLS-type motifs: implications for the origin of the cell nucleus

Melnikov SV, HS Kwok, K Manakongtreecheep, A van den Elzen, CC Thoreen, D Söll (2020)
Molecular Biology and Evolution, 37: 124-133 PDF | SI

9. Engineered tRNA synthetases with improved selectivity toward noncanonical amino acids

Kwok HS , Vargas-Rodriguez O, Melnikov SV, Söll D (2019)
ACS Chemical Biology, 14: 603-612 PDF | SI

8. tRNA synthetases and tRNAs for an expanded genetic code: what makes them orthogonal?

Melnikov SV, Söll D (2019)
International Journal of Molecular Sciences 20:1929-1930 PDF | SI

7. Mechanistic insights into the slow peptide bond formation with D-amino acids

Melnikov SV, Khabibullina NF, Mairhofer E, Vargas-Rodriguez O, Reynolds NM, Micura R, Söll D, Polikanov YS (2018)
Nucleic Acids Research 47:2089-2100 PDF | SI

6. Loss of protein synthesis quality control in host-restricted organisms

Melnikov SV, van den Elzen A, Stevens DL, Thoreen CC, Söll D (2018)
Proceedings of the National Academy of Sciences 115:e11505 PDF | SI

5. Muller’s ratchet and ribosome degeneration in the obligate intracellular parasites Microsporidia

Melnikov SV, Manakongtreecheep K, Rivera K, Makarenko A, Pappin D, Söll D (2018)
International Journal of Molecular Sciences, 19: 4125 PDF | SI

4. Error-prone protein synthesis in parasites with the smallest eukaryotic genome

Melnikov SV, Rivera K, Ostapenko D, Makarenko A, Sanscrainte N, Becnel J, Solomon M, Texier C, Pappin D, Söll D (2018)
Proceedings of the National Academy of Sciences, 115:e6245 PDF | SI

3. Revising the structural diversity of ribosomal proteins across the three domains of life

Melnikov SV, Manakongtreecheep K, Söll D (2018)
Molecular Biology and Evolution, 35:1588-1598 PDF | SI

2. RNA binding by the anticancer drug cisplatin

Melnikov SV, Söll D, Steitz TA, Polikanov YS (2016)
Nucleic Acids Research, 44:4978-4987 PDF | SI

1. Insights into the role of rRNA modifications in protein synthesis and ribosome assembly

Polikanov YS#, Melnikov SV#, Söll D, Steitz TA (2015)
Nature Structural & Molecular Biology, 22:342 PDF | SI

Strasbourg University

7. Insights into the role of diphthamide on longation factor 2 in mRNA reading-frame maintenance

Pellegrino S, Demeshkina N, Mancera-Martinez E, Melnikov SV, Simonetti A,  Myasnikov A, Yusupov M, Yusupova G, Hashem Y (2018)
Journal of Molecular Biology, 430:2677-2687 PDF | SI

6. Molecular insights into protein synthesis with proline residues

Melnikov SV, Mailliot J, Rigger L, Neuner S, Shin BS, Yusupova G, Yusupov M (2016)
EMBO Reports, 17:1776-1784 PDF | SI

5. Structure of hypusine-containing translation factor eIF5A bound to a rotated eukaryotic ribosome

Melnikov SV, Mailliot J, Shin BS, Rigger L, Yusupova G, Micura R, Dever TE, Yusupov M (2015)
Journal of Molecular Biology, 428:3570-3576 PDF | SI

4. Insights into the origin of the nuclear localization signals in conserved ribosomal proteins

Melnikov SV, Ben-Shem A, Yusupova G, Yusupov M (2015)
Nature Communications, 6:7382 PDF | SI

3. Crystal structure of the 80S yeast ribosome

Jenner L, Melnikov SV, de Loubresse NG, Ben-Shem A, Iskakova M, Urzhumtsev A, Meskauskas A, Dinman J, Yusupova G, Yusupov M (2012)
Current Opinion in Structural Biology, 22:759-767 PDF | SI

2. One core, two shells: bacterial and eukaryotic ribosomes

Melnikov SV, Ben-Shem A, de Loubresse NG, Jenner L, Yusupova G, Yusupov M (2012)
Nature Structural and Molecular Biology, 19:560 PDF | SI

1. The structure of the eukaryotic ribosome at 3.0 Å resolution

Ben-Shem A#, de Loubresse NG#, Melnikov SV#, Jenner L, Yusupova G, Yusupov M (2011)
Science, 334:1524-1529 PDF | SI

Moscow State University

4. Effect of prothymosin α and its mutants on the activity of the p53 tumor suppressor

Zakharova NI, Sokolov VV, Roudko VV, Melnikov SV, Vartapetian AB, Evstafieva AG (2008)
Molecular Biology, 42:598-608 PDF | SI

3. Interaction with Keap1 does not lead to ubiquitination and degradation of prothymosin α

Melnikov SV, Evstafieva AG, Vartapetian AB (2007)
Molecular Biology, 41:790-796 PDF | SI

2. New functions of a well-known protein: prothymosin α in defence from apoptosis and oxidative stress

Evstafieva AG, Karapetian RN, Rubtsov YP, Filonov GS, Abaeva IS, Fateeva TV, Melnikov SV, Chichkova NV, Vartapetian AB (2005)
Molecular Biology, 39:631-645 PDF | SI

1. Nuclear oncoprotein prothymosin α binds Keap1 to regulate expression of oxidative stress-protecting genes

Karapetian RN, Evstafieva AG, Abaeva IS, Chichkova NV, Filonov GS, Rubtsov YP, Sukhacheva EA, Melnikov SV, Schneider U, Wanker EE, Vartapetian AB (2005)
Molecular and Cellular Biology, 25:1089-1099 PDF | SI